

Hypertension: Local and Global Interventions

Yvonne Commodore-Mensah, PhD, MHS, RN, FPCNA, FAAN, FAHA Professor, Johns Hopkins Nursing and Public Health Johns Hopkins Center for Health Equity

ycommodore.bsky.social

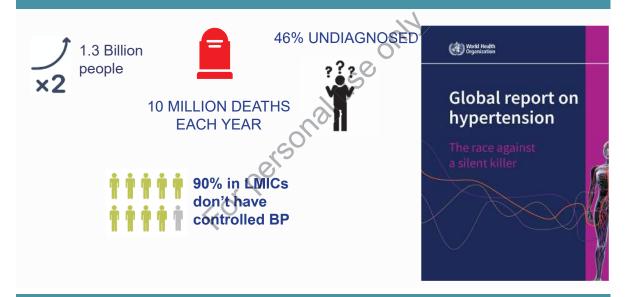
April 11, 2025

Disclosures For Personal Use only

I have no disclosures

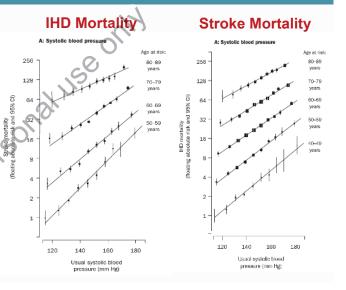
Objectives

- 1. Analyze hypertension epidemiology and its socioeconomic impact locally and globally.
- 2. Examine key factors contributing to uncontrolled hypertension and resulting health disparities across populations
- 3. Evaluate the effectiveness of evidence-based multi-level interventions for hypertension management.
- 4. **Discuss** comprehensive nursing approaches for hypertension prevention, treatment, and long-term control.

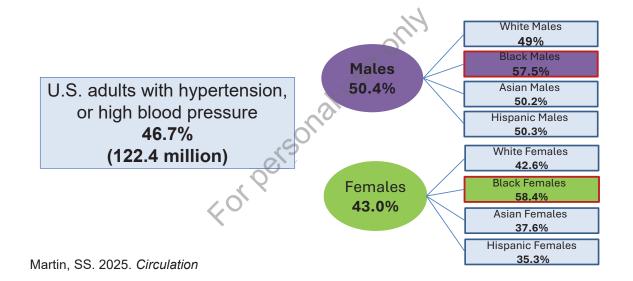


Definition and Classification of Hypertension

BP Category	Systolic BP		Diastolic BP	Treatment or Follow-up
Normal	<120 mm Hg	and	<80 mm Hg	Evaluate yearly; encourage healthy lifestyle changes to maintain normal BP
Elevated	120-129 mm Hg	and	<80 mm Hg	Recommend healthy lifestyle changes and reassess in 3-6 months
Hypertension: stage 1	130-139 mm Hg	or	80-89 mm Hg	Assess the 10-year risk for heart disease and stroke using the atheroscientic cardiovascular disease (ASCVD) risk calculator • If risk is less than 10%, start with healthy lifestyle recommendations and reassess in 3-6 months • If risk is greater than 10% or the patient has known clinical cardiovascula disease (CVD), diabetes mellitus, or chronic kidney disease, recommend lifestyle changes and BP-lowering medication (1 medication); reassess in 1 month for effectiveness of medication therapy — If goal is met after 1 month, reassess in 3-6 months — If goal is not met after 1 month, consider different medication or titration — Continue monthly follow-up until control is achieved
Hypertension: stage 2	≥140 mm Hg	0	≥90 mm Hg	Recommend healthy lifestyle changes and BP-lowering medication (2 medications of different classes); reassess in 1 month for effectiveness If goal is met after 1 month, reassess in 3-6 months If goal is not met after 1 month, consider different medications or titration Continue monthly follow-up until control is achieved

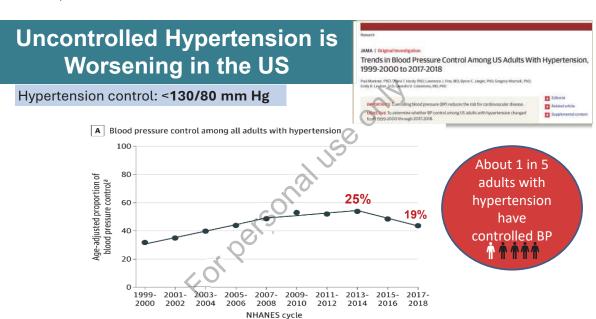

Whelton, P. et al 2017. Hypertension

Hypertension is a global health challenge


BP lowering reduces CVD risk

- A 10-mm Hg reduction in systolic blood pressure (SBP) is associated with:
 - 15% to 20% reduction in the risk of coronary artery disease (CAD)
 - 25% to 30% reduction in the risk of stroke.

Ettehad, D. et al. 2016. *The Lancet* Lewington S. et al. 2002. *The Lancet*


Hypertension Prevalence in US, 2017–2020, age ≥20y

Hypertension Burden in the US

Martin, SS. et al. 2025. Circulation

BARRIERS TO HYPERTENSION CONTROL

Why are BP Control Rates Poor?

Environment /Society

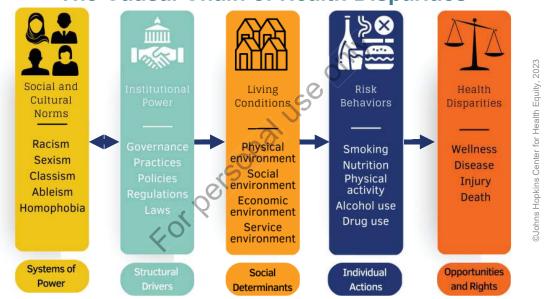
- Poor social support
- Poor access to healthy foods
- Inadequate community resources

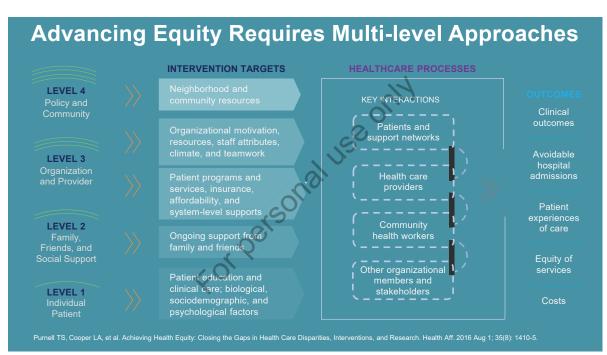
Patients

- Low health literacy
- Unhealthy lifestyles
- Medication taking habits

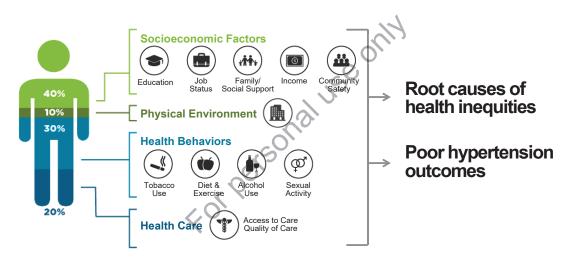
Health System

- Quality orientation
- Staffing
- Team functioning
- Practice resources
- Outreach focus


Clinicians/Staff


- Clinical inertia
- Competing priorities
- Technical skills
- Communication skills

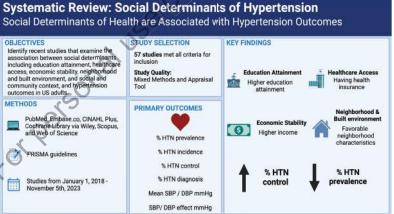
BLOOD PRESSURE **Hurdles to Blood Pressure Control** CONTINUITY OF CARE No reminders No recall system TREATMENT Medications not affordable No protocol No information system Drug shortages DIAGNOSIS Low adherence Therapeutic inertia Li nited workforce Screening not done Private sector Diagnosis not made Patient flow Low attendance L/mited workforce Inaccurate measurement Limited workforce


11

The Causal Chain of Health Disparities

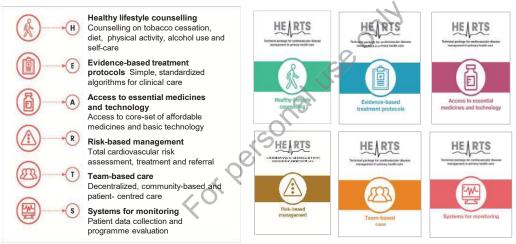
Social Determinants of Health

Social Determinants of Controlled BP


- N=21,664 adults (mean age 47.1 years), 51% female
- Factors associated with a lower probability of controlled BP:
 - -Non-Hispanic Black versus White adults
 - -Not having a routine place for health care
 - -Not having health insurance.
 - -Being employed versus unemployed (females)
 - Being married versus being unmarried (females)

Commodore-Mensah Y, Turkson-Ocran RA, Foti K, Cooper LA, Himmelfarb CD. 2021. Associations between Social Determinants and Hypertension, Stage 2 Hypertension and Controlled Blood Pressure among Men and Women in the US. Am J Hypertens.

Impact of Social Determinants of Health on Hypertension Outcomes: A Systematic Review



Metlock et al., 2024, Hypertension

Evidence-based interventions to improve hypertension control

Recommendations for Best Hypertension Control Practices-HEART Package

WHO: HEARTS: Technical package for cardiovascular disease management in primary health care: Risk-based CVD management; https://www.who.int/publications/i/item/9789240001367

Implementation Strategies for Blood Pressure Control

Comparative Effectiveness based on meta-analysis of 121 comparison(55,920)

Implementation Strategy		Net Change in BP (95% Cl), mm Hg	Studies, n
Systolic BP	i		
Team-based care with titration by nonphysician	-	-7.1 (-8.9 to -5.2)	10
Team-based care with titration by physician	-	-6.2 (-8.1 to -4.2)	19
Multilevel strategy without team-based care	-	-5.0 (-8.0 to -2.0)	8
Health coaching	1 (S)	-3.9 (-5.4 to -2.3)	38
Electronic decision-support systems	- (2)	-3.7 (-5.2 to -2.2)	4
Home BP monitoring	7	-2.7 (-3.6 to -1.7)	26
Provider training	=	-1.4 (-3.6 to 0.7)	5
Audit and feedback	-	-0.8 (-2.1 to 0.5)	2

Mills KT, et al 2018. Ann Intern Med.

Nonpharmacological Interventions

Intervention	Dose/Recommendation	Impact on BP (Hypertension)
Weight loss	Best goal is ideal body weight, but aim for at least a 1-kg reduction in body weight for most adults who are overweight. Expect about 1 mm Hg for every 1-kg reduction in body weight.	–5 mm Hg
DASH dietary pattern	Consume a diet rich in fruits, vegetables, whole grains, and low-fat dairy products, with reduced content of saturated and total fat.	-11 mm Hg
Reduced dietary sodium	Optimal goal is <1500 mg/d, but aim for at least a 1000-mg/d reduction in most adults.	−5/6 mm Hg
Enhanced dietary potassium	Aim for 3500–5000 mg/d, preferably by consumption of a diet rich in potassium.	-4/5 mm Hg

Nonpharmacological Interventions

Intervention	Dose/Recommendation	Impact on BP (Hypertension)
Aerobic activity	90–150 min/wk at 65%–75% heart rate reserve	−5/8 mm Hg
Dynamic resistance	90–150 min/wk at 50%–80% 1 rep maximum, 6 exercises, 3 sets/exercise, 10 repetitions/set	-4 mm Hg
Isometric resistance	4 × 2 min (hand grip), 1 min rest between exercises, 30%–40% maximum voluntary contraction, 3 sessions/wk for 8–10 wk	-5 mm Hg
Alcohol moderation	In individuals who drink alcohol, reduce alcohol to: Men: ≤2 drinks daily Women: ≤1 drink daily	-4 mm Hg

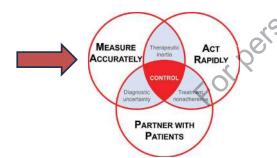
Whelton, P. et al 2017, Hypertension

A combination of different medications is needed to achieve BP

- •Diuretics: Remove excess sodium and water, reducing blood volume and pressure.
- •ACE Inhibitors: Block the production of angiotensin II, preventing blood vessel narrowing.
- •ARBs: Block the action of angiotensin II on blood vessels, reducing blood pressure.
- •CCBs: Prevent calcium from entering heart and blood vessel cells, causing relaxation

Recommendation for Choice of Initial-Medication

COR	LOE	Recommendation	
ł	A ^{SR}	1. For initiation of antihypertensive drug therapy, first-line agents include thiazide diuretics, CCBs, and ACE inhibitors or ARBs.	


Whelton, P. et al 2017. Hypertension

Assess and address adherence to antihypertensive medication

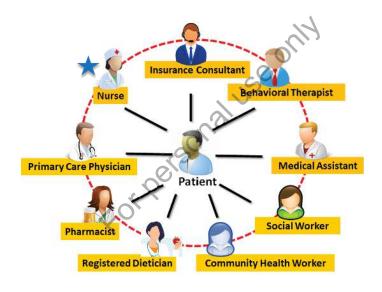
- 1. High rates of **non-adherence** to hypertension medication.
 - Global prevalence of 27% to 40%
 - Higher prevalence was detected in low- to middle-income and non-Western countries
- 2. Common factors associated with non-adherence
 - -Cost of medication
 - -Side effects
 - -Forgetfulness
 - -Inadequate knowledge about hypertension
- 3. Nursing interventions targeting these factors may improve adherence and hypertension control
 - Assess adherence: Hill-Bone Medication Adherence Scale

Measure blood pressure accurately

- · Measuring BP is a key skill for nurses.
- Following these tips will help ensure that all BP measurements are accurate.

MISMEASUREMENT OF BLOOD PRESSURE IN THE OFFICE:

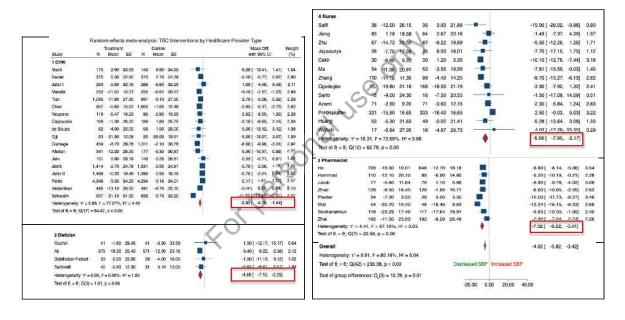
Team-Based Care Improves Blood Pressure


- Team-based care(TBC) to improve BP control is defined as a health systems-level, organizational intervention that relies on multidisciplinary teams to improve the quality of hypertension care for patients. 1
 - Task-shifting/Task-sharing
- Advantages include²:
 - Improved BP control
 - Expanded healthcare access
 - Improved patient medication adherence
 - Better follow-up
 - Improved patient satisfaction

- 1. Proia KK, et al. 2014 . Am J Prev Med.
- HEARTS Technical package for cardiovascular disease management in primary health care: team-based care. Geneva: World Health Organization; 2018 (WHO/NMH/NVI/18.4). Licence: CC BY-NC-SA 3.0 IGO.

Team-based care should be patient-centered

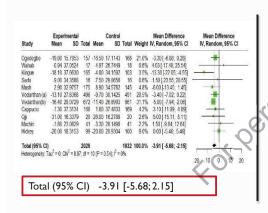
Systematic Review and Meta-analysis on Team-based hypertension care in LMICs



eClinicalMedicine

Part of THE LANCET Discovery Science

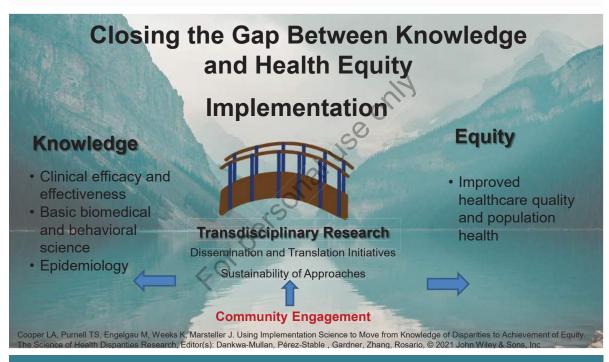
Subgroup Analysis: Team-Based Care by Cadres of Healthcare workers



Summary

- Overall SBP change -4.62 mmHg (95%CI: -5.82 to -3.42)
- Notable differences in SBP change based on healthcare provider cadre
 - CHW: -3.30 mmHg (95% CI: -4.76, -1.84)
 - Dieticians: -4.68 mmHg (95% 61.2-7.10, -2.25)
 - Nurses: -5.06 mmHg (95% ©1: -7.95, -2.17)
 - Pharmacists: -7.32 mmHg (95% CI: -9.22, -5.41).

Systematic Review and Meta-analysis on Team-based hypertension care in Africa


Overall SBP change -3.91 [95% CI: -5.68;
 2.15]

Difference BP by HCW

- CHW: -4.43 mm Hg (95% CI: -5.69 to -3.17)
- Nurses: 3.75 mm Hg (95%Cl: -10.62 to 3.12)

Hinneh T, et al. 2024. BMJ Open.

31

General Principles for Engagement

1P50MD017348-01

LINKED-HEARTS Program

A Cardiometabolic Health Program **LINKED with Community Health WorkErs** and Mobile HeAlth TelemonitoRing To reduce Health DisparitieS

LINKED-HEARTS: Study Team

Gabriela Ortega

Domonique Harris CHW

Cheryl R. Himmelfarb, PhD, ANP, RN

Yuling Chen, PhD, RN

Lyndsey Spies CHW

Andrea Orellana, BA Research Program

Research Assistant

Tve Lane, BS

Laura Maus, MD Research Assistant

Justin Echouffo

Melina Stavrou CHW

Maricielo Leisure

Research Assistant

Kathryn Carson, ScM

Mary Richard

Bunmi Ogungbe

Shellybright Manga

LINKED-HEARTS Program - Aims and Methods

- Primary Aim: To compare the effect of the LINKED-HEARTS Program versus HBPM in improving BP control (systolic BP <140/90 mm Hg) and improving patientcentered outcomes at 6 and 12 months in adults with uncontrolled hypertension and diabetes or chronic kidney disease (CKD).
- ► Secondary Aim: To evaluate the reach, adoption, maintenance of the LINKED. HEARTS program at 12 and 24 months post-randomization and explore contextual factors that are associated with the adoption and maintenance of the program.

Study Population

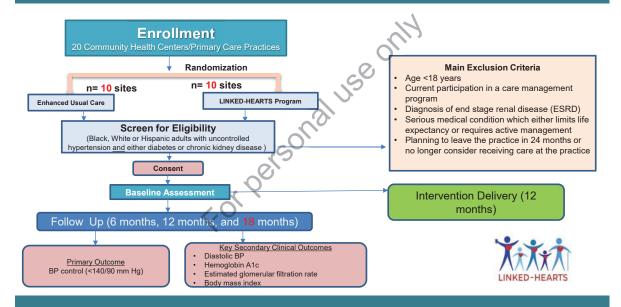
Adults (≥18y/o) with uncontrolled hypertension (SBP≥140 mm Hg) AND either diabetes or chronic kidney disease

Setting

Community health centers and primary care practices that provide care to underserved populations in Maryland and DC

LINKED-HEARTS

Program

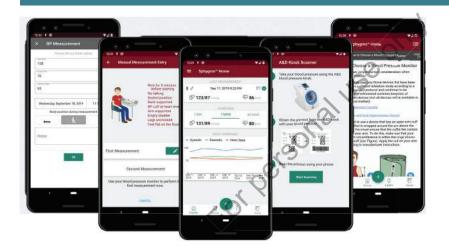

Study Design

Hybrid type 1 effectivenessimplementation design

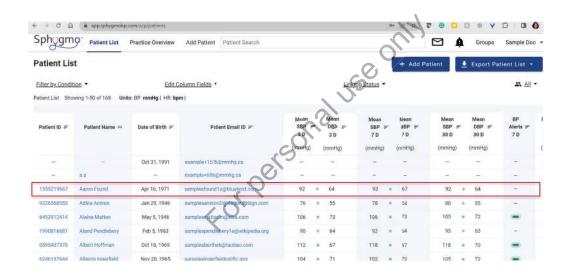
Cluster-Randomized Trial

Examining superiority of the intervention program over enhanced usual care using a pragmatic approach

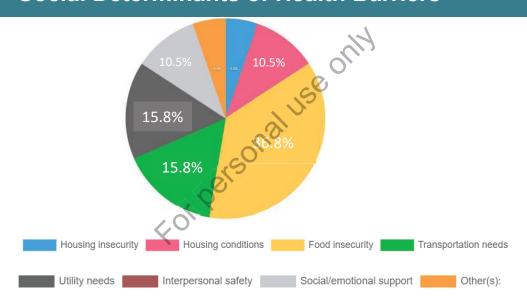
LINKED-HEARTS Program - Study Design


Participating Health Systems

LINKED-HEARTS Program - Multi-level Intervention

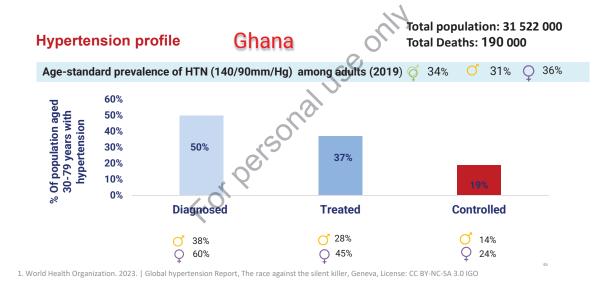

Description of Intervention Components	Patient	Provider	Community	System
		(),,		
Home blood pressure monitoring	X	O.		
Sphygmo Home BP telemonitoring platform	x S	×		
Evidence-based treatment algorithms		Х		
Simplification of drug regimen	200	Х		
Training on office-based BP	0	х		х
measurement		^		^
Education and counseling on lifestyle	х		X	
modification	^		^	
Community health worker telehealth	х		х	х
visits	^		^	^
Pharmacist telehealth visits		Х		Х

LINKED-HEARTS Program App: Sphygmo Home


Sphygmo App Clinician Portal

Community Health Workers

Social Determinants of Health Barriers



Current Enrollment

		Sex		Race/ethnicity			
	All Patients	Female	Male	African American	Hispanic	White	
Number enrolled	286	1742	112	159	10	89	
Target number	425	213	212	60	85	280	
% of target	67.3%	81.7%	52.8%	265%	11.7%	31.2%	

Hypertension Cascade in Ghana

ADHINCRA Study Protocol

Project goal

► Test the **feasibility** of a multilevel, nurse-led, mobile health enhanced intervention in patients with uncontrolled hypertension in Kumasi, Ghana

Methods

Design:

Two-arm pilot cluster RCT involving **240** patients with uncontrolled HTN (SBP≥ 140 mmHq)

Setting: Kumasi, Ghana

Outcomes:

► Clinical outcomes: BP control

▶ Intermediate outcomes: Medication Adherence

▶ Patient-Reported Outcome: The acceptability and

usability of the Akoma pa app

Participants

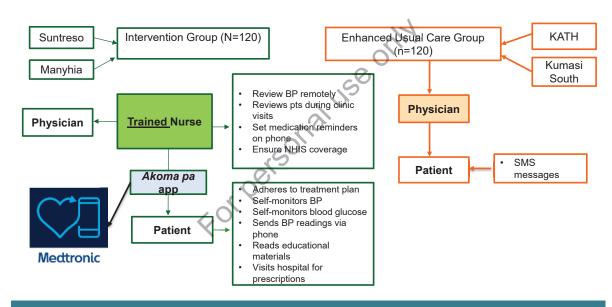
Inclusion criteria:

- ✓ IMale or female
 ✓ Uncontrolled HTN: SBP ≥140 mm Hg
 ✓ ± Diabetes diagnosis
 ✓ ± CVD or stroke
 ✓ 18-70 years

Exclusion criteria:

- ✓ End stage renal disease (ESRD)
- ✓ Cognitive impairment/dementia
- ✓ Severe global disability

Stakeholder Engagement



Intervention

Study Nurses

Results: Baseline characteristics by Study arm

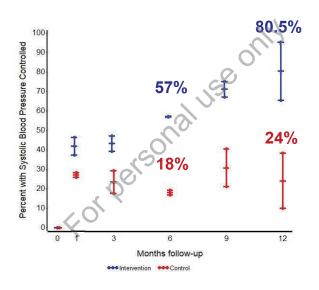
	Total	Intervention	Enhanced Usual	P-value
	(N=240)	(N=120)	Care (N=120)	
Age, mean ±SD	53 ±_9.7	54 ± 9.5	52 ± 9.8	0.21
Male	117 (49)	60 (50)	57 (48%)	0.70
Married/cohabitating	178 (74.2)	90 (75.0)	88 (73.3)	0.76
Highest level of education (n, %)		, 0,		
≤Primary School	78 (32.5)	20 (16.7)	58 (48.3)	<0.001
Secondary/High School	110 (45.8)	68 (56.7)	42 (35.0)	
College or higher	52 (21.7)	32(26.6)	20 (16.7)	
Employed	186 (77.5)	95 (79.2)	91 (75.8)	0.54
Income level per month(n, %)	200			
<1200 GHC (\$105)	5(2.5)	3(3.6)	2(1.7)	0.49
1200-< 6000GHC (\$105-528)	45(22.3)	22 (26.5)	23(19.3)	
6000- <12000GHC (\$528-1058)	71(35.2)	27(32.5)	44(37.0)	
≥1000 GHC (\$1058)	81 (40.1)	31 (37.4)	50(40.0)	

Results: Cardiovascular Disease Risk Factors

	Total (N=240)	Intervention (N=120)	Enhanced Usual Care (N=120)	P-value
Diabetes mellitus	60 (30)	30 (25)	30 (25)	0.61
Dyslipidemia	74 (31)	40 (33)	34 (28)	0.40
Current Alcohol use	46 (19)	35 (29)	11 (9)	<0.001
Body Mass Index (n, %)				0.60
Underweight (<18.5 kg/m ²)	1 (0.4)	0 (0)	1(0.8)	
Normal (18.5 -24.9 kg/m²)	52(21.7)	29(24.2)	23(19.2)	
Overweight (25.0-29.9 kg/m ²)	101(42.1)	50(41.7)	51(42.5)	
Obesity (≥30 kg/m²)	86(35.8)	41(34.2)	45(37.5)	
Complications (n, %)	-6)			
Stroke	8 (3)	3 (3)	5 (4)	0.50
Heart Failure	12 (5)	6 (5)	6 (5)	1.00
Systolic BP, mm Hg (mean ±SD)	157.6 <u>+</u> 13.8	156.8 <u>+</u> 14.27	158.2 <u>+</u> 13.4	0.45
Diastolic BP, mm Hg (mean ±SD)	95.8 <u>+</u> 9.0	95.9 <u>+</u> 10.1	95.8 <u>+</u> 7.8	0.93

Unpublished data

Systolic blood pressure, mm Hg: least squares means and differences


	1	A (0.50/, OI)	\	I
Visit	Least Squares I	leans (95% CI)	Difference	P value
Viole	Enhanced Usual Care	Intervention	21110101100	. value
Baseline	157.5 (154.3, 160.7)	156.5 (153.5, 159.4)		
6 Months	155.9 (151.8, 159.9)	138.8 (135.0, 142.6)		
Change from baseline	-1.6 (-5.4, 2.1)	-17.7 (-21.4, -14.0)	-16.0 (-21.3, -10.8)	<0.001
12 Months	153.5 (149.8, 157.1)	130.9 (127.5, 134.4)		
Change from baseline	-4.0 (-7.6, -0.4)	-25.6 (-29.1, -22.0)	-21.5 (-26.6, -16.4)	<0.001

Least squares means are from a mixed effects regression model including all available systolic blood pressure measures, controlling for clustering within hospital and repeated measures per subject. Model was adjusted for patient characteristics of age, gender, education level, and current alcohol use.

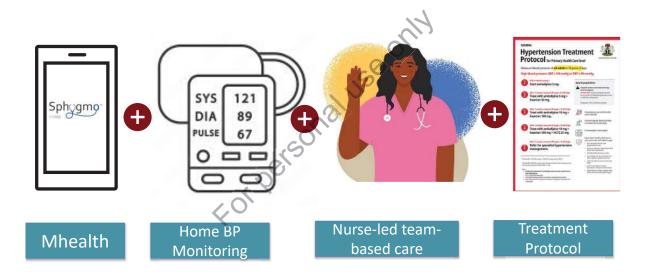
P value is for the interaction of visit and intervention group.

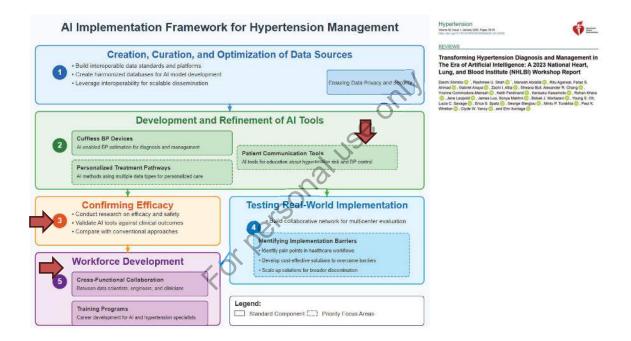
Unpublished data

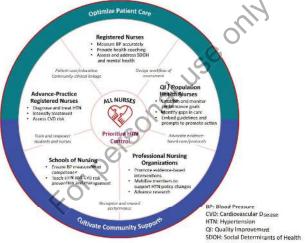
Blood Pressure Control in the ADHINCRA Study

Next Steps: ADHINCRA in Ghana & Nigeria

- Pilot intervention plus
 - Treatment intensification with simplified hypertension treatment protocol
 - Hypertension without diabetes
- 16 facilities (800 patients)
- Hybrid type 2 effectiveness-implementation design
 - Stepped wedge design cluster-randomized trial






ADHINCRA Program Intervention

Call to Action for Nurses and Midwives

Hannan JA, Commodore-Mensah Y, Tokieda N, Smith AP, Gawlik KS, Murakami L, Cooper J, Koob S, Wright KD, Cassarino D, Arslanian-Engoren C, Melnyk BM. Improving hypertension control and cardiovascular health: An urgent call to action for nursing. Worldviews Evid Based Nurs. 2022 Feb;19(1):6-15. doi: 10.1111/wvn.12560. Epub 2022 Feb 8. PMID: 35137506; PMCID: PMC9305122.

THANK YOU

Yvonne Commodore-Mensah, PhD, MHS, RN ycommod1@jhmi.edu (410)-614-1519

